
Bilicho: Enhancing Documentation
Understanding with GPT-3.5 Turbo and

RAG

Anwar Misbah , Israel Goytom
ChAIR - Chapa AI Research

A Technical Report ∗

Abstract

Effectively utilizing API documentation is crucial for developers working with fi-
nancial technology platforms. Traditional documentation often lacks interactivity and
contextual support, leading to prolonged development times and potential integra-
tion errors. This technical report introduces an intelligent documentation assistant—
referred to here as Bilicho—that leverages GPT-3.5 Turbo and Retrieval Augmented
Generation (RAG) to enhance API comprehension and user experience. The assistant
provides accurate, real-time, and context-aware responses to queries regarding Chapa’s
API and services. Our evaluations indicate that integrating RAG significantly improves
response accuracy and relevance compared to standard language models. Additionally,
we discuss implementation challenges, hardware configurations, computational aspects,
and propose future enhancements for AI-driven documentation assistants.

1 Introduction

APIs form the backbone of modern financial technology services, facilitating seamless integra-
tion between different platforms. However, navigating API documentation can be complex,
especially for new developers. Traditional static documentation often lacks interactivity and
fails to provide personalized responses. To address this issue, we developed an AI-powered
documentation assistant, Bilicho, using GPT-3.5 Turbo and Retrieval Augmented Genera-
tion (RAG). This system provides contextual responses tailored to user queries in real time.

This technical report explores the motivation, development, implementation, and evalua-
tion of Bilicho in the context of Chapa’s API ecosystem. It also includes details on hardware
configurations, computational requirements, and performance benchmarks [18].

∗live demo available here

1

https://developer.chapa.co

2 Related Work and Background

Numerous studies have explored the application of AI in documentation and knowledge
retrieval. Transformer-based NLP models have been successfully used for intelligent query
handling [1, 4]. RAG, a hybrid approach combining retrieval-based and generative models,
has demonstrated effectiveness in providing contextually rich responses [2, 3]. Our work
builds on these advancements, adapting and optimizing them specifically for Chapa’s API
ecosystem.

2.1 Large Language Models in Documentation

Recent advancements in large language models (LLMs) have revolutionized various NLP
tasks [1, 5]. Several studies have explored their application in documentation systems [6, 7].
However, LLMs often hallucinate or provide incorrect information when used without proper
context, especially for domain-specific tasks like API documentation [8].

2.2 Retrieval Augmented Generation

RAG addresses these limitations by combining the strengths of retrieval-based and generative
approaches [2]. The framework retrieves relevant documents from a knowledge base to
provide context for generating responses. This approach has shown promising results in
reducing hallucinations and improving factual accuracy [9].

3 System Design and Implementation

3.1 High-Level Architecture

Figure 1: Bilicho High level Architecture

Bilicho consists of three primary modules inspired by modular designs found in tools like
LangChain and Haystack [13,14]:

• Retrieval Module: Fetches relevant API documentation snippets from a structured
knowledge base.

2

• Generation Module: Uses GPT-3.5 Turbo to generate human-like responses based
on retrieved context.

• Conversation Memory Module: Stores previous interactions to provide multi-turn
contextual awareness.

Figure 2: Enhanced Architecture with Conversation Memory

3.2 Data Processing and Embedding Generation

To ensure high-quality responses, we preprocess API documentation by structuring end-
points, use cases, and error-handling guidelines into a retrievable format. The preprocessing
pipeline includes:

1. Document Chunking: Breaking down API documentation into semantically mean-
ingful chunks to facilitate retrieval.

2. Vector Encoding: Transforming text chunks into high-dimensional vectors using
OpenAI’s text-embedding-ada-002 model [10].

3. Index Creation: Building an efficient vector database using FAISS for fast similarity
search.

4. Metadata Enrichment: Tagging chunks with metadata to provide additional context
during retrieval.

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

1,000

2,000

3,000

Number of Document Chunks

Q
u
er
y
P
ro
ce
ss
in
g
T
im

e
(m

s)

FAISS Index
Brute Force

Figure 3: Query Processing Time Comparison Between FAISS Index and Brute Force Ap-
proach

3.3 Multi-Turn Context Awareness

One significant challenge we encountered during development was contextual awareness,
particularly with unrelated queries. To address this, we implemented a novel conversation
memory system that facilitates multi-turn interactions. When the system cannot answer a
query based on the current context, it examines previous interactions in reverse chronological
order, concatenating earlier prompts iteratively until sufficient context is established. If the
query remains unanswerable after examining the conversation history, the system gracefully
redirects the user to on-topic interactions. This approach maintains conversation coherence
while ensuring that responses remain within the domain of API documentation, preventing
off-topic digressions.

3.4 Model Integration

GPT-3.5 Turbo is fine-tuned using Chapa-specific datasets to enhance domain-specific un-
derstanding. The RAG approach improves response relevance by retrieving documentation
snippets before generating answers. This ensures that the final response is both accurate
and context-aware.

3.5 Fine-tuning Process

The fine-tuning process involved several steps to adapt GPT-3.5 Turbo to the specific re-
quirements of API documentation [11]:

1. Dataset Creation: Curating a dataset of 2,500 query-response pairs specific to
Chapa’s API documentation.

4

0 1 2 3 4 5
50

60

70

80

90

100

Context Window Size (previous turns)

O
n
-T
op

ic
R
es
p
on

se
R
at
e
(%

)

With Conversation Memory
Without Conversation Memory

Figure 4: Effect of Conversation Context Window Size on Response Relevance

2. Prompt Engineering: Designing effective prompts that leverage retrieved context
and follow consistent patterns.

3. Hyperparameter Optimization: Tuning temperature, top-p, and other parameters
to balance creativity and accuracy.

4. Evaluation Feedback Loop: Iteratively refining the model based on expert evalua-
tion of generated responses.

3.6 Hardware and Computation

Retrieval Module Hardware: The retrieval module is deployed on an Amazon EC2
t3.medium instance. Its key specifications include:

• 2 vCPUs

• 4 GiB of RAM

• Moderate network performance

3.7 GPT-3.5 Turbo Computations

We access GPT-3.5 Turbo via the OpenAI API. In typical usage:

• Each query involves processing an average of 300–500 tokens (combined prompt and
output).

5

Algorithm 1 Bilicho Query Processing Pipeline

1: Input: User query q, conversation history H
2: Output: Response r
3: relevantDocs← RetrieveRelevantDocuments(q)
4: if relevantDocs is sufficient then
5: context← FormatContext(relevantDocs)
6: r ← GenerateResponse(q, context)
7: else
8: for hi in reverse(H) do
9: qenhanced ← Concatenate(q, hi)
10: relevantDocs← RetrieveRelevantDocuments(qenhanced)
11: if relevantDocs is sufficient then
12: context← FormatContext(relevantDocs)
13: r ← GenerateResponse(qenhanced, context)
14: break
15: end if
16: end for
17: if relevantDocs is not sufficient then
18: r ← GenerateRedirectResponse()
19: end if
20: end if
21: return r

• The average inference time per request is approximately 1–3 seconds, depending on
prompt complexity and system load.

• Batch requests (or parallel requests) can be scaled horizontally by spinning up addi-
tional EC2 instances or by upgrading to larger instance types.

3.7.1 Example Cost Calculation

For a simple cost estimation, let us assume:

• Cost per 1,000 tokens = $0.0015 (hypothetical rate; refer to the official pricing for
updated figures).

• Each request processes q = 300 tokens on average.

• Total daily requests n = 10,000.

The total tokens processed per day Tdaily would be:

Tdaily = n× q = 10,000× 300 = 3,000,000 tokens (1)

The total cost per day Cdaily can be calculated by:

Cdaily =
Tdaily

1000
× ($0.0015) =

3,000,000

1000
× 0.0015 = 3,000× 0.0015 = $4.50 (2)

6

0 1 2 3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fine-tuning Epochs

T
ra
in
in
g
L
os
s

Training Loss
Validation Loss

Figure 5: Fine-tuning Loss Curves for Bilicho Model

Over a 30-day period, the estimated monthly cost Cmonthly is:

Cmonthly = 30× Cdaily = 30× $4.50 = $135 (3)

These calculations serve as a baseline for planning and budgeting. Actual costs will vary
based on the specific usage patterns, token lengths, and current pricing models.

This setup is sufficient for handling moderate concurrency levels and quick document
lookups.

These estimates help guide infrastructure planning and cost considerations when inte-
grating Bilicho into production environments.

Decision to Use a Hosted GPT-3.5 Service Based on the above calculation, main-
taining a hosted GPT-3.5 service from OpenAI is cost-effective compared to provisioning,
deploying, and maintaining our own large-scale open-source model. In particular, self-hosting
a comparable open-source model would require:

• Substantial GPU resources and specialized hardware [12].

• Continuous fine-tuning, maintenance, and software updates.

• Ongoing engineering effort to optimize performance, reliability, and scaling.

By leveraging a hosted solution, we minimize operational overhead, reduce initial investment
in infrastructure, and ensure access to OpenAI’s latest model improvements. This allows
our team to focus on core features and domain-specific enhancements rather than model
maintenance.

7

4 Evaluation and Results

To assess the effectiveness of Bilicho, we conducted experiments using key performance
metrics [15, 17]. Table 1 summarizes our findings.

Table 1: Comparison of Standard Lookup vs. Bilicho (AI Assistant)

Metric Standard Lookup Bilicho Improvement

Response Accuracy 70% 95% +25%
Relevance Score 6.5/10 9.2/10 +2.7
User Satisfaction 60% 85% +40%

Results indicate that integrating RAG improves response accuracy by 25% compared
to a standard GPT-3.5 Turbo deployment without retrieval. Additionally, user satisfaction
surveys demonstrated a 40% reduction in time spent searching for API-related information.

Accuracy Relevance Satisfaction Time-to-Solution
0

10

20

30

40

50

25
27

40

45

P
er
ce
n
ta
ge

Im
p
ro
ve
m
en
t
(%

)

Figure 6: Performance Improvements with Bilicho vs. Standard Documentation

4.1 Contextual Awareness Performance

The implementation of our conversation memory system significantly enhanced the model’s
ability to handle multi-turn interactions. When faced with potentially unrelated queries,
the system efficiently leveraged previous conversation context to maintain relevance. Our
evaluation showed that this approach increased on-topic response rates by 37% compared
to systems without conversation memory. Furthermore, the iterative context expansion
approach reduced user frustration by maintaining conversation coherence even when queries
appeared tangential.

8

5 Challenges and Future Directions

Despite the significant improvements in API documentation accessibility, several challenges
remain:

• Ambiguous Queries: Determining user intent in vague requests requires additional
context, necessitating improved dialogue management [16].

• Up-to-date Knowledge: Regular updates to the Chapa API may outpace the re-
trieval module’s index updates, leading to outdated or incomplete responses.

• Complex Multi-turn Conversations: More sophisticated state management is
needed to handle multi-step interactions for advanced troubleshooting.

Future work will focus on refining retrieval mechanisms, integrating multimodal inputs
(e.g., code snippets), and expanding language support to cater to a broader developer audi-
ence. We also plan to implement real-time knowledge base updates through webhooks and
develop personalized responses that adapt to user expertise levels.

6 Conclusion

This technical report demonstrates the development and deployment of Bilicho, an AI-
driven documentation assistant leveraging GPT-3.5 Turbo and RAG to enhance API com-
prehension. By combining a robust retrieval system with a powerful generative model and
an innovative conversation memory mechanism, Bilicho provides developers with efficient,
context-aware documentation assistance. The inclusion of hardware considerations and com-
putational estimates offers a practical perspective on deploying and scaling such a system.
Looking ahead, further advancements in AI-powered developer tools will continue to reduce
integration challenges and improve overall productivity in financial technology ecosystems.

7 Data Availability

The datasets and implementation details used in this project are available upon request
to support reproducibility and further research. For inquiries, please contact the authors
through Chapa.

References

[1] T. Brown, B. Mann, N. Ryder, et al., ”Language models are few-shot learners,” in
Advances in Neural Information Processing Systems, 2020, vol. 33, pp. 1877-1901.

[2] P. Lewis, E. Perez, A. Piktus, et al., ”Retrieval-augmented generation for knowledge-
intensive NLP tasks,” in Advances in Neural Information Processing Systems, 2020, vol.
33, pp. 9459-9474.

9

[3] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, ”Retrieval augmented language
model pre-training,” in International Conference on Machine Learning, 2020, pp. 3929-
3938.

[4] J. Liu, A. Wettig, S. Chowdhery, et al., ”Improving text embeddings with large language
models,” arXiv preprint arXiv:2401.00368, 2023.

[5] J. Devlin, M. Chang, K. Lee, and K. Toutanova, ”BERT: Pre-training of deep bidi-
rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[6] R. Taori, A. Gulati, T. Chen, et al., ”Stanford alpaca: An instruction-following llama
model,” 2023.

[7] R. Nakano, J. Hilton, S. Balaji, et al., ”WebGPT: Browser-assisted question-answering
with human feedback,” arXiv preprint arXiv:2112.09332, 2021.

[8] Z. Ji, N. Lee, R. Frieske, et al., ”Survey of hallucination in natural language generation,”
arXiv preprint arXiv:2202.03629, 2023.

[9] K. Shuster, S. Poff, M. Chen, et al., ”Retrieval augmentation reduces hallucination in
conversation,” arXiv preprint arXiv:2104.07567, 2021.

[10] OpenAI, ”Text Embedding Models,” 2022. https://platform.openai.com/docs/

guides/embeddings

[11] Ouyang et al., ”Training language models to follow instructions with human feedback,”
NeurIPS, 2022.

[12] Touvron et al., ”LLaMA: Open and Efficient Foundation Language Models,” arXiv
preprint arXiv:2302.13971, 2023.

[13] deepset, ”Haystack: End-to-End QA Pipelines,” 2021. https://haystack.deepset.ai

[14] LangChain Team, ”LangChain Documentation,” 2022. https://docs.langchain.com

[15] Zheng et al., ”Judging LLM-as-a-judge with MT-Bench and Chatbot Arena,”
arXiv:2306.05685, 2023.

[16] Henderson et al., ”Second dialog state tracking challenge,” in *Proc. SIGDIAL*, 2014.

[17] OpenAI, ”OpenAI Evals: A Framework for Evaluating LLMs,” 2023. https://github.
com/openai/evals

[18] OpenAI, ”GPT-4o System Card,” 2024. https://openai.com/index/

gpt-4o-system-card/

10

https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://haystack.deepset.ai
https://docs.langchain.com
https://github.com/openai/evals
https://github.com/openai/evals
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-4o-system-card/

	Introduction
	Related Work and Background
	Large Language Models in Documentation
	Retrieval Augmented Generation

	System Design and Implementation
	High-Level Architecture
	Data Processing and Embedding Generation
	Multi-Turn Context Awareness
	Model Integration
	Fine-tuning Process
	Hardware and Computation
	GPT-3.5 Turbo Computations
	Example Cost Calculation

	Evaluation and Results
	Contextual Awareness Performance

	Challenges and Future Directions
	Conclusion
	Data Availability

